Description
Chair: Laurence Perreault Levasseur
Known for their impressive performance in generative modeling, diffusion models are attractive candidates for density-based anomaly detection. This paper investigates different variations of diffusion modeling for unsupervised and semi-supervised anomaly detection. In particular, we find that Denoising Diffusion Probability Models (DDPM) are performant on anomaly detection benchmarks yet computationally expensive. By simplifying DDPM in application to anomaly detection, we are naturally led to an alternative approach called Diffusion Time Probabilistic Model (DTPM). DTPM estimates the posterior distribution over diffusion time for a given input, enabling the identification of anomalies due to their higher posterior density at larger timesteps. We derive an analytical form for this posterior density and leverage a deep neural network to improve inference efficiency. Through empirical evaluations on the ADBench benchmark, we demonstrate that all diffusion-based anomaly detection methods perform competitively. Notably, DTPM achieves orders of magnitude faster inference time than DDPM, while outperforming it on this benchmark. These results establish diffusion-based anomaly detection as an interpretable and scalable alternative to traditional methods and recent deep-learning techniques.